
4 CROSSTALK The Journal of Defense Software Engineering April 2006

Principles and practices associated with
agile methods are not new concepts in

the world of software development.
Extreme Programming (XP), an agile
method itself, has been used successfully
in a variety of software development envi-
ronments. Overall reviews in the software
development community have been
mixed. In his history of the Agile
Manifesto [1], Jim Highsmith uses terms
like organizational anarchists and independent
thinkers to describe the alliance embracing
a unifying set of values. The following is
stated in the Agile Manifesto:

We are uncovering better ways of
developing software by doing it
and helping others do it. Through
this work we have come to value:
• Individuals and interactions

over processes and tools.
• Working software over com-

prehensive documentation.
• Customer collaboration over

contract negotiation.
• Responding to change over fol-

lowing a plan.
That is, while there is value in the
items on the right, we value the
items on the left more. [2]

Pure software development tradition-
alists consider the techniques that many
agile software developers use to follow
these values as an excuse to hack undocu-
mented, poorly designed code. The pure
agile developer would consider the plan-
driven traditionalists responsible for sad-
dling software developers with low-value
processes that hinder or prevent the deliv-
ery of software. Fortunately, we, as soft-
ware developers, do not need to take sides.

There exist many shades of gray in the
spectrum between agile and traditional
methods. The shade you select that best
fits your program depends upon many
factors, including (but not limited to) team
size, criticality of defects, ability to receive
user feedback/interaction, customer
expectations, budget, schedule, and stabil-

ity of requirements. Since these factors are
different from program to program, no
two programs should have identical strate-
gies in their software development.

Traditional methods are geared toward
optimization, predictability, and control.
Agile methods focus on adaptation to
change, flexibility, and innovation. The
new art of software development is find-
ing the appropriate balance point among
the available practices. Figure 1 is a chart
developed by McCabe and Polen [3] based
on a figure from Alistair Cockburn [4]
indicating the relative nature between agile
and conventional projects based on pro-
ject team size and notional cost of system
failure. Included on the chart is the place-
ment of a U.S. Army simulation program,
known as the One Semi-Automated

Forces (OneSAF) Objective System (OOS).
The OOS is a large software-intensive

system (greater than two million lines of
source code) that will be used to support
research and development and train future
U.S. military leaders. In the genesis of the
OOS program development, we research-
ed and considered aspects of agile meth-
ods and XP as well as traditional strategies.
None of these approaches were looked on
as cookbook methodologies, but rather as
a smorgasbord. Those that appeared to be
a good fit were implemented; others were
left on the table.

After more than four years of devel-
opment, the OneSAF program remains
on-track to satisfy requirements and meet
user needs. The OneSAF program has
been awarded the National Training Sys-
tems Association Cross Function Award
for the Integrated Product Team; it was
also selected by CrossTalk as one of
the 2003 U.S. Government’s Top 5 Quality
Software Projects.

Interestingly enough, the customer
base for OOS was more comfortable with
traditional pedantic software-development
methods, even though they contributed to
an environment with ill-defined and often-
changing requirements. The program spent
a great deal of time educating the user rep-
resentatives on XP and other agile meth-
ods. Most have grown to embrace these
methods, but the program still hears some
users making statements like, “Spiral devel-
opment doesn’t work; it has created a con-
figuration management nightmare,” or
“XP has reduced time for testing.” Despite
statements like these, the processes estab-
lished for OOS development – a blend of
agile, extreme, and traditional techniques –
have been instrumental in the program
reaching programmatic and technical goals.

This article is not intended to discuss
the technical capabilities of the OOS;

Army Simulation Program Balances Agile and
Traditional Methods With Success

Doug J. Parsons
Program Executive Office – Simulation Training and Instrumentation

The One Semi-Automated Forces (OneSAF) Objective System is the next generation simulation system planned to provide
the U.S. Army with an entity-level simulation to serve three modeling and simulation domains. Software development of the
OneSAF application has been conducted in a highly robust systems engineering environment based on commercial and gov-
ernment best practices. The OneSAF program has tailored techniques of Extreme Programming (XP) and other agile meth-
ods into a development environment that has resulted in several industry awards, most recently the National Training Systems
Association Cross Function Award for the Integrated Product Team. These externally certified Capability Maturity Model®

Integration Level 5 processes are credited with successful program execution. This article will discuss which XP and other
agile techniques were used, which were not, and why.

Alternate Mixes for CMMI

LTC John Surdu, Ph.D.
U.S. Army

“There exist many
shades of gray in the

spectrum between agile
and traditional methods

... no two programs
should have identical

strategies in their
software development.”

® Capability Maturity Model is registered in the U.S. Patent
and Trademark Office by Carnegie Mellon University.

Army Simulation Program Balances Agile and Traditional Methods With Success

April 2006 www.stsc.hill.af.mil 5

however, it is important that the reader
understands some of the program’s histo-
ry to note similarities and distinctions with
their own programs, present or past.

Mission Need and the Users
The OOS is the Army’s next generation
simulation system that can represent a full
range of military operations, systems, and
control processes. It is an entity-level sim-
ulation, meaning that it can simulate the
activities of individual combatants or
vehicles (as opposed to aggregate-level
simulations, which represent combatants
and vehicles as groupings). It will also pro-
vide the appropriate representations of
the physical environment (e.g., terrain fea-
tures, weather, and illumination) and its
effect on simulated activities and behav-
iors.

The OOS is unique among Army sim-
ulations in that it is designed for use by
three distinct Army Modeling and Simu-
lation (M&S) domains. Specifically, the
Advanced Concepts and Requirements
domain uses M&S for experimentation
and analysis on Army doctrine and force-
related concepts. The Research, Develop-
ment, and Acquisition domain uses M&S
for acquisition analyses focused on equip-
ping and supporting currently fielded and
future forces. Finally, the Training, Exer-
cises, and Military Operations domain
employs M&S to train forces. It does so
using live simulation (actual equipment on
training ranges), virtual simulation
(immersing the trainee into a synthetic
environment), and constructive simulation
(war games using computer-generated
forces).

There exist two factors relative to our
users that inherently pull the OOS devel-
opment toward the center of the agile-
conventional project spectrum. First,
OOS will be used extensively for analysis
and experimentation. Analysts and re-
search scientists rely on a robust set of
documentation to support verification and
validation (V&V). For these users, it is
critical to understand how OOS models
work. Secondly, the OneSAF business
model includes the distribution of source
code with release of the software baseline
[5]. The intention is to create an environ-
ment that will optimize the ability for
extended capabilities created by the M&S
community to be reintegrated into the
baseline. Agile projects tend to be light on
documentation and process. OOS will
include a robust set of documentation and
tools to support V&V. In addition,
process description and documentation to
aid and guide external developers of the
baseline will also be provided.

A New Approach
While the use of commercial best prac-
tices seems intuitive, five years ago this
was quite unique in Department of
Defense (DoD) software development.
Some of the changes were simple. The
approach toward programmatic documen-
tation was a minimalist one. Some
approaches were considered heretical: uti-
lizing the OneSAF program manager
(PM) as the manager of the OOS task
orders (similar to a prime contractor), and
establishing an integrated development
environment (IDE), which made the
adoption of many agile methods and XP
practices possible.

PM Is the Prime
A typical approach in DoD software
development is for the government to
select a single contractor who specifies its
own set of subcontractors under a large,
monolithic contract. In contrast, PM
OneSAF was allowed to complete a vari-
ety of task orders under an Indefinite
Delivery, Indefinite Quantity contract and
manage it as the lead systems integrator.
The advantage is that the government can
pick a best-of-breed contractor rather than
settle for a sub-contractor who may or
may not be the best choice. During the
past four years, 26 different contractor
companies have been contracted to work
on different parts of the OneSAF soft-
ware. The contracts range in scope and
include short-term studies, architecture
review, knowledge acquisition, architec-
ture and integration, model development,
and integration and test.

An initial concern was that the con-
tractors would disagree on the means to
resolve issues and the process would grind
to a halt. Associate Contractor Agree-
ments (ACAs) were signed by each task
order organization; however, an ACA is
only a piece of paper that asks a contrac-
tor to play nice. To help socialize the ACAs,
the contracts were awarded over the space

of 18 months. The Architecture and
Integration (A&I) contract was awarded
first, and the processes, tools, and proce-
dures were established. When new con-
tractors came on board, they were inte-
grated into existing processes so that we
avoided food fights about whose processes
were better than others. This does not
imply that existing processes were never
modified; we remained committed
throughout execution to continuous
process improvement and aggressively
sought new ideas.

Three factors contributed to the ability
for PM OneSAF to successfully act as the
prime. First, the OneSAF government
team is involved in the day-to-day develop-
ment process. This allows informed and
timely decisions to be made on behalf of
the PM. Second, PM OneSAF empowered
the A&I contractor with a great deal of
flexibility to establish development, inte-
gration, and test processes from industry
best practices: There were no government-
mandated processes heavy with valueless
documentation. Third, the PM sought
technically qualified folks across the
breadth of the program. Not only are
OneSAF engineers truly technical with
advanced degrees in software-related disci-
plines and years of real engineering experi-
ence, but OneSAF managers and project
directors were recruited from engineering.
As there are numerous disincentives for
technical people within the Army, it was
quite challenging to find even the small
number of qualified engineers we needed.

It is unclear whether these unique busi-
ness processes alone were the major con-
tributor to successful execution or whether
the employment of agile methods was the
key. It is clear, however, that without these
new ways of doing business, it is unlikely
that agile methods would have been
employed or embraced.

IDE
To support an effective and efficient soft-

Integration and Test Development
Knowledge Acquisition/
Knowledge Engineering

Build X-1 Build X Build X+1

Figure 2: Three-Build Process for Creating a Functional Capability in OOS

Conventional

Projects

Agile

Projects

OOS

Loss of Life

$$$

$

Annoyance

 10 50 100 1,000

C
o

s
t

o
f

S
y

s
te

m
F

a
il
u

r
e

Project Team Size

Figure 1: Spectrum for Project Type Considering Defect Cost and Team Size

Alternate Mixes for CMMI

6 CROSSTALK The Journal of Defense Software Engineering April 2006

ware development process, PM OneSAF
established an environment that brought
together domain/user representatives,
government engineers, PMs, and contract
or software developers. All of these teams
are collocated in a single facility. A task
order for facility operation and sustain-
ment was intentionally awarded to a con-
tractor outside any of those developing
software to send the message that the IDE
was neutral turf. Over the past four years,
there have been as many as a dozen indi-
vidual task orders under execution at any
one time. From these task orders, there
have been more than 100 software engi-
neers working in concert to develop a
baseline.

Applying Agile Methods and
XP to OneSAF
Communication and Collocation
The Agile Manifesto states that in agile
software development, the following
should occur [6]:
• Business people and developers must

work together daily throughout the
project.

• The most efficient and effective
method of conveying information to
and within a development team is face-
to-face conversation.
Paulk states that agile methods gener-

ally apply to smaller teams working in the
face of vague and/or dynamic require-
ments [7]. He also states that agile teams
are expected to be collocated with typical-
ly fewer than 10 members. XP rules also
indicate that the customer should always
be available and that a stand-up meeting
starts each day to communicate problems,
solutions, and promote team focus.

OOS development has practiced collo-
cation from its inception. As mentioned
earlier, the government program office is
the prime for OOS, and there are numer-
ous contractors working the program. All
contractors from the 10 to 12 companies
working on OOS are collocated in the
IDE facility. In addition, the combat
developer (requirements steward and cus-
tomer), customer representatives (from
the three Army M&S domains), and gov-
ernment engineers and managers are col-
located in the same facility. It often takes a
newcomer to the program months to find
out what company everyone works for
because on Team OneSAF we concentrate

on functional decomposition of the prob-
lem more than on which company is
working a portion of the problem.

Through the use of ACAs, communi-
cation between the various organizations
is smooth and seamless. The face-to-face
coordination referred to in the Agile
Manifesto occurs habitually in the IDE. A
member of the combat development
team said recently, “Much of the work on
OOS occurs in the hallways.” Informal
meetings with the right two or three peo-
ple in the hallway often work through
some technical or inter-team coordination
issue in a few minutes rather than sched-
uling a meeting with dozens of folks.
OOS developers are encouraged to get up
and walk down the hallway if they have an
issue. From the earliest days of OOS
development, the OneSAF PM Office
prohibited weekly scheduled meetings on
Wednesday through Friday. A lesson
learned from other program development
efforts was that engineers tended to save
communication with other people on the
team until the scheduled meeting.
Intentionally, this forced the engineers to
meet more frequently in desk-side or hall-
way meetings.

Spiral Development: Builds, Blocks,
and Early Delivery
In discussing requirements, McCabe and
Polen state:

… the customer may hardly grasp
the problem, much less the best
system to address it. Therefore,
requirements are likely to be vague
or speculative when they should be
specific. [3]

Recognizing that the customers’ require-
ments and desires would evolve as they
saw working prototypes (or alpha versions
of the software), OOS adapted a spiral
development methodology. Paulk noted:

… with their emphasis on address-
ing requirements volatility, agile
methodologies could be a powerful
synthesis of practices that DoD
contractors could leverage to make
planning more responsive to
change. [7]

The Agile Manifesto supports the

notion of spiral development with the fol-
lowing tenets [6]:
• The highest priority is to satisfy the

customer though early and continuous
delivery of valuable software.

• Welcome changing requirements, even
late in development.

• Deliver working software frequently,
from a couple of weeks to a couple of
months, with a preference to the
shorter timescale.

• Working software is the primary mea-
sure of progress.
XP rules and practices concerning the

software development process include the
following [8]:
• Make frequent small releases.
• The project is divided into iterations.
• Integrate often.
• Iteration planning starts each iteration.
• Never add functionality early.
• Code must be written to agreed-upon

standards.
The development methodology adopt-

ed for OOS was one of frequent itera-
tions, or spirals. It involved breaking the
overall program into a series of eight- to
10-week builds. Several of these builds
were then designated as user assessment
baselines that were made available to users
for assessment and azimuth correction.
User involvement is discussed below.

The early and frequent delivery of
builds was the OOS’ way of implementing
these tenets of the manifesto. Being able
to see working code – even if that code
initially was focused on architecture and
tools rather than interesting military capa-
bility – gave the users confidence in the
process and the development team. As
McCabe and Polen state, “Until a usable
system is delivered, the customer has
nothing to show for its investment” [3].

Paulk asserted the following:

Agile methodologies, with their
rapid iterations, require continual
planning. Customer collaboration
and responsiveness to change are
tightly linked, if perhaps inconsis-
tent with typical government-con-
tractor relationships. [7]

The overall, strategic program requirements
and overall architecture changed little over
the four years of software development;
however, the specific, tactical requirements
and many of the smaller design decisions
were made as late as possible.

The overall goals of a particular block
were locked down during the block plan-
ning a few weeks before the beginning of
the block, not at the beginning of the pro-
gram in a big bang. Additionally, the fine-

Figure 2: Three-Build Process for Creating a Functional Capability in OOS

Integration and Test Development
Knowledge Acquisition/
Knowledge Engineering

Build X-1 Build X Build X+1

Figure 2: Three-Build Process for Creating a Functional Capability in OOS

Conventional

Projects

Agile

Projects

OOS

Loss of Life

$$$

$

Annoyance

 10 50 100 1,000

C
o

s
t

o
f

S
y

s
te

m
F

a
il
u

r
e

Project Team Size

Army Simulation Program Balances Agile and Traditional Methods With Success

April 2006 www.stsc.hill.af.mil 7

grained requirements and design of a build
were finalized only one build before execu-
tion. While executing Build X, the program
is planning Build X+1 and testing Build X-
1. A change in requirements, therefore,
could be reacted to within 16 weeks, not a
year. Figure 2 illustrates this process.

A major advantage of a spiral method-
ology was the ability of the program to
adapt to requirements changes. McCabe
and Polen asserted, “When needs are
changing, the value of the original system
as specified, however optimum it was at
the time of its conception, depreciates
daily” [3]. During program development,
the Army made a radical change in organi-
zation to a focus on Brigade Combat
Teams. The OOS program was able to
rapidly shift focus between spirals so that
it would be delivered with the new force
structure rather than the old. Additionally,
the threat faced by U.S. forces changed.
OOS was able to curtail representation of
older, Soviet-style opposing forces and
implement a more contemporary, uncon-
ventional enemy.

Customer Involvement in
Development
Turner and Boehm state:

One of the major differences
between agile and plan-driven
methods is that agile methods
strongly emphasize having dedicat-
ed, collocated customer represen-
tatives, while plan-driven methods
count on a good deal of up-front,
customer-developer work on con-
tractual plans and specifications. [9]

Because the customer representatives are
collocated in the IDE, they participate in
all our meetings, and are available to
answer questions or reach back into their
customer base for feedback and input.

Several of the OOS builds were desig-
nated User Assessment Baselines (UAB).
These UABs were available in the IDE for
users to evaluate. In addition, a number of
assessment events were held in the IDE
during which users from around the Army
were invited to participate. Finally, the PM
office took the software to user sites for
more formal assessments. It may seem
obvious to some, but users use the soft-
ware differently than engineers and devel-
opers. While the users often tried to treat
these developmental assessments as oper-
ational tests, resulting in often vitriolic
feedback, the events were excellent oppor-

tunities to allow users to identify bugs in
the software in an operational-like envi-
ronment.

Documentation Versus Working Code
OOS software builds can vary between
eight and 10 weeks in duration, depending
upon the difficulty of the tasks in that
build, and how they fit in the timeframe of
the block. Since Build 4, OOS has had
working software that could be demon-
strated and made available for user feed-
back. As McCabe and Polen state, “Your
only real knowledge comes from a work-
ing system” [3].

Having working code since Build 4
reflects the agile method’s bias toward
working code rather than documentation-
centric development. However, extensive
design documentation, knowledge acquisi-
tion documentation, and technical notes
do exist and are reposed in <www.One
SAF.net>, the program’s collaborative

information warehouse. In addition, user
documentation is maintained in a form
that is simultaneously compiled into a
users’ manual and online help.

Paulk states that when employing agile
methods, a project must:

Decide where to place the balance
point in documentation and plan-
ning to alleviate the concerns of
the stakeholders (and regulatory
requirements) while achieving the
flexibility and benefits promised in
the agile philosophy. [7]

This is not to imply that the OOS soft-
ware is not adequately documented. The
A&I contractor has been externally certi-
fied at Capability Maturity Model
Integration (CMMI®) Level 5, so the

development processes are well docu-
mented. Not only are the processes docu-
mented, but the results of the processes
(the development products/artifacts) are
captured. Metrics are captured on the exe-
cution of processes as well, and the A&I
contractor conducts periodic defect preven-
tion sessions to examine and correct the
root cause of common issues.

The documentation of these processes
and products is captured in a Web-enabled
manual known as the Electronic Process
Guide. The artifacts that document devel-
opers’ adherence to these processes are
found in several Web-enabled repositories
such as the online Software Development
Folders, Web-based tracking tools for
action items, trouble reports, defects, peer
reviews, and risks. The very nature of hav-
ing a Web-enabled tool set reduced the
burden on developers for complying with
these processes and enabled communica-
tion across teams.

Extreme Testing
With respect to testing, agile methods
indicate the projects should include the
following [8]:
• Code the unit test first.
• All code must have unit tests that must

pass before being released.
• When a bug is found, tests are created.
• Acceptance tests are run often and the

score is published.
Whenever an OOS developer commits his
or her changes to configuration manage-
ment (i.e., Concurrent Versions System), a
tool – called BuildBoy – builds the soft-
ware for Linux, Windows, and Solaris and
runs nearly 3,000 automated tests on each
operating system. If the build fails, the
developer and his or her supervisor are
sent an e-mail. The developer can then ref-
erence the BuildBoy Web page to deter-
mine the nature of the failure and take cor-
rective action. In this way, the software is
built and subjected to unit and integration
tests on average of eight times a day.

McCabe and Polen state:

Writing automated unit tests first is
a clever way of inducing develop-
ers to not only unit test their code
efficiently, but also to write their
code efficiently without superflu-
ous logic. [3]

While we agree in concept, this is an area
in which we need improvement. All code
is delivered at the end of a build with
appropriate tests, and some of the teams
do build the tests first, but we are not con-
sistently using the methodology of build-
ing the test first.

“Being able to see
working code – even if
that code initially was

focused on architecture
and tools rather than
interesting military

capability – gave the
users confidence in the

process and the
development team.”

® CMMI is registered in the U.S. Patent and Trademark
Office by Carnegie Mellon University.

Alternate Mixes for CMMI

8 CROSSTALK The Journal of Defense Software Engineering April 2006

With respect to the tenet of building a
test when a bug is found, we have adapted
this process to large, complex software.
While we do not build a test for every bug
that is fixed, when we find the same pat-
tern of bug appears many times, we build
an automated test to trap it.

Conclusion
The OOS software is being developed
through a combination of agile, extreme,
and traditional techniques. We have not
blindly adopted all of the techniques and
tenets of these agile approaches; however,
we have used a great many of them. The
program still has room for improvement in
some areas, and our CMMI Level 5 contin-
uous process improvement is ever vigilant
for opportunities to do so. In particular, we
are in need of more agile testing and an
increased number of automated tests.

The unique blend of these techniques
has been instrumental in the award-win-
ning success of the OOS development
effort. Some readers may wonder which of
these techniques were most beneficial and
if they could be applied to other programs
with equal success. The answer to both of
these questions is based upon our original
premise: the best method depends upon
the nature of the program itself. Program
characteristics such as team size and
impact of system failure are evident; how-
ever, each PM needs to consider other
issues that define the technical, program-
matic, and political landscape: Will upper
management support less conventional
techniques? Does the government team
have the appropriate skill set to work
closely with the software development
team, not just monitor contractor activity
and check end results? Are the users open
to agile methods and willing to actively
participate throughout the process?

The best methods are as unique as the
programs themselves. Since our program
initiation, we have engaged with other
organizations that have tried to emulate
the form – without the substance – of
these agile methods and innovative busi-
ness processes; their successes have been
limited. The authors considered what
methods and techniques worked best for
the OneSAF program. After pondering
this question, the answer illustrates the
shades of gray between traditional and
agile methods. Strictly following the
CMMI Level 5 processes (traditional) and
the individual interactions (agile) among
users, developers, and government repre-
sentatives were essential contributors.
Four years ago we did not know what
would work best, or what would work at
all for that matter. However, we were will-

ing to try something innovative, willing to
make changes along the way, and bold
enough to see it through.u

References
1. Highsmith, J. “History: The Agile

Manifesto.” The Agile Alliance, 2001
<http://agilemanifesto.org/history.
html>.

2. Agile Alliance. “Agile Software Devel-
opment Manifesto.” Agile Alliance, 13
Feb. 2001 <www.agilemanifesto.org>.

3. McCabe, R., and M. Polen. “Should
You Be More Agile?” CrossTalk
Oct. 2002 <www.stsc.hill.af.mil/
crosstalk/2002/10/mccabe.html>.

4. Cockburn, Alistair. “Learning From
Agile Software Development – Part
One.”CrossTalkOct. 2002 <www.
stsc.hill.af.mil/crosstalk/2002/10/
cockburn.html>.

5. Parsons, D., and R. Wittman. “Open
Source Opens Opportunities for
Army’s Simulation System.” Cross-
Talk Jan. 2005 <www.stsc.hill.af.mil/
crosstalk/2005/01/0501parsons. html>.

6. Agile Alliance. “Principles Behind the
Agile Manifesto.” Agile Alliance, 30
May 2005 <http://agilemanifesto.org/
principles.html>.

7. Paulk, M. “Agile Methodologies and
Process Discipline.” CrossTalk
Oct. 2002 <www.stsc.hill.af.mil/cross
talk/2002/10/paulk.html>.

8. Wells, D. “The Rules and Practices of
Extreme Programming.” Extreme
Programming. 28 Feb. 2004 <www.
extremeprogramming.org/rules.html>.

9. Turner, R., and B. Boehm. “People
Factors in Software Management:
Lessons From Comparing Agile and
Plan-Driven Methods.” CrossTalk
Dec. 2003 <www.stsc.hill.af.mil/
crosstalk/2003/12/0312turner.html>.

About the Authors

LTC John “Buck”
Surdu, Ph.D., is the
product manager for the
One Semi-Automated
Forces Objective System.
Originally commissioned

as an infantry lieutenant, Surdu served in
operational assignments in the 82nd
Airborne Division, Europe, and Korea.
He worked as a research scientist at the
Army Research Laboratory and a senior
research scientist and assistant professor
in the Information Technology and
Operations Center within the Depart-
ment of Electrical Engineering and
Computer Science at West Point. He has
a Bachelor of Science in computer sci-
ence from the United States Military
Academy, West Point, a Master of
Science in computer science from
Florida State University, a Master of
Business Administration from Columbus
State University, and a doctorate in com-
puter science from Texas A&M
University.

12350 Research PKWY
Orlando, FL 32826-3276
Phone: (407) 384-5103
Fax: (321) 235-1484
E-mail: john.surdu@us.army.mil

Doug J. Parsons is the
lead engineer of the
Intelligent Simulation
Systems Team at the U.S.
Army Program Executive
Office for Simulation,

Training, and Instrumentation. His pri-
mary focus is toward the successful
development of the One Semi-Auto-
mated Forces Objective System. Parsons
has a Bachelor of Science in mechanical
engineering from North Dakota State
University, a Master of Science in sys-
tems management from Florida Institute
of Technology, and a Master of Science
in industrial engineering from the
University of Central Florida.

Program Executive Office –
Simulation Training and
Instrumentation (PEO-STRI)
12350 Research PKWY
Orlando, FL 32826-3276
Phone: (407) 384-3821
E-mail: doug.parsons@us.army.mil

Did this article pique your interest?
You can hear more at the Eighteenth
Annual Systems and Software Technolo-
gy Conference May 1-4, 2006, in Salt
Lake City, UT. Doug Parsons will pre-
sent in Track 7, Room 251A-C on
Thursday, May 4, at 8 a.m.

